Determination of the Young's modulus of the epicuticle of the smooth adhesive organs of Carausius morosus using tensile testing
نویسندگان
چکیده
Adhesive organs like arolia of insects allow these animals to climb on different substrates by creating high adhesion forces. According to the Dahlquist criterion, adhesive organs must be very soft, exhibiting an effective Young's modulus of below 100 kPa to adhere well to substrates. Such a low effective Young's modulus allows the adhesive organs to make almost direct contact with the substrate and results in van der Waals forces along with capillary forces. In previous studies, the effective Young's moduli of adhesive organs were determined using indentation tests, revealing their structure to be very soft. However, adhesive organs show a layered structure, thus the measured values comprise the effective Young's moduli of several layers of the adhesive organs. In this study, a new approach is illustrated to measure the Young's modulus of the outermost layer of the arolium, i.e. of the epicuticle, of the stick insect Carausius morosus. As a result of the epicuticle being supported by upright fibres, tensile tests allow the determination of the Young's modulus of the epicuticle with hardly influence from subjacent layers. In our tensile tests, arolia of stick insects adhering on a latex membrane were stretched by stretching the membrane while the elongation of the contact area between an arolium and the membrane was recorded. For analysis, mathematical models of the mechanical system were developed. When fed with the observed elongations, these models yield estimates for the Young's modulus of the epicuticle of approximately 100 MPa. Thus, in arolia, a very thin layer (~225 nm) of a rather stiff material, which is less susceptible to abrasion, makes contact with the substrates, whereas the inner fibrous structure of arolia is responsible for their softness.
منابع مشابه
Evidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects.
Insects possess adhesive organs that allow attachment to diverse surfaces. Efficient adhesion must be retained throughout their lifetime even when pads are exposed to contamination. Many insects groom their adhesive structures, but it is possible that self-cleaning properties also play an important role. We measured attachment forces of insect pads on glass after contamination with microspheres...
متن کاملEvaluation of Long Term Ageing of Asphalt Mixtures Containing EAF and BOF Steel Slags
This study was conducted in order to evaluate the effects of long term ageing on toughness and resilient modulus of asphalt concrete mixtures containing Electric Arc and Basic Oxygen Furnace steel slags. After initial evaluation of the properties of steel slags using X-ray Diffraction and Scanning Electric Microscope, eleven sets of laboratory mixtures were prepared. Each set was treated replac...
متن کاملEffect of silica particles on adhesion strength of polyvinyl chloride coatings on metal substrates
The aim of this study was to improve the adhesion performance of plasticized polyvinyl chloride (PVC) coatings on steel substrates by using nanoparticles. For this purpose, the PVC plastisol with different concentration of nano-silica was prepared and applied to bond steel joints. The adhesive strength of the joints was determined by single-lap shear test. Moreover, mechanical properties and mi...
متن کاملFailure Mode and Analysis of the Bonded/bolted Joints between a Hybrid Fibre Reinforced Polymer and Aluminium Alloy
Composites are being used extensively in several engineering applications. However, the efficiency of the joints used in joining composites and metals can be improved. To move towards a sustainable and environment friendly future, natural fibre composite material was used. Towards the above objective, research work was carried out for the assembly between a composite and aluminium. Three differ...
متن کاملEffect of relative humidity on mechanical strength of zirconia/ Nafion® Nano-composite membrane
This paper presents the results of mechanical strength of wet and dry zirconia/ Nafion® nano-composite membrane. The tensile tests were conducted to determine elastic modulus and stiffness of dry and wet pristine Nafion® membrane and modified Nafion® membrane. The composite membranes were prepared by recast method of different synthesized zirconium oxide with the zirconia content of 10% by weig...
متن کامل